# Variation

## Combined Variation Word Problems

This section caters exclusively to word problems involving combined variation. As introduced in the previous section, combined variation is when there is both a direct (multiplication) and inverse (division) variation that occurs together. Be sure to watch all three parts as they examine different scenarios commonly found in textbooks, all of…

## Joint and Combined Variation

When y varies directly as both x and w, we say that y varies jointly as x and w. When you first looked at direct variation, you focused mainly on a single dependent and independent variable (i.e. y and x, respectively). This time the equation directly depends one 2 or…

## Inverse Variation

The phrase “y varies inversely as x” or “y is inversely proportional to x” means that as x gets bigger, y gets smaller, and vice versa. Inversely proportional terms can mathematically be represented as: null Notice how x is under a constant k. ? Don’t confuse inverse variation with inverse functions. An inverse function…

## Direct Variation

Direct variation is when the dependent variable, y, varies according to the independent variable, x. The most generic direct variation equation is y = 1·x. If you plot this equation, you will get a diagonal line cross the origin. To generalize any direction variation equation, use the following template: null…