In base-10, place values correspond to powers of 10, for example:
In base-b, place values correspond to powers of b:
Base-5
Base-5 uses the digits 0, 1, 2, 3, 4 to represent any number. In base-5, we start by counting 1, 2, 3, 4. At 5, however, we must write 105 (base-5 does not use the digit “5”):
null
Here’s how we write to up to 10 in base-5.
Q1. Convert 43025 to decimal notation.
Q2. Write 384 as a base-5 numeral.
Q3. Add 3425 + 2235
Q4. Subtract 4245 − 1435
Q5. Multiply 1345 × 325
Q6. Perform the division 41325 ÷ 235
Base-8
The base-8 or octal system uses the digits: 0, 1, 2, 3, 4, 5, 6, 7. Notice that this time the digit “8” isn’t being used. The counting pattern is:
Base-16
The base-16 or hexadecimal system uses the digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
The counting pattern is:
Base-2 (Binary)
The base-2 or binary system uses the digits: 0, 1. The counting pattern is:
Q1. Write the binary command 1011001101011110 using octal notation.
Q2. Write the binary command 1011001101011110 using hexadecimal notation.